Main Article Content


The purpose of this review is to identify
known and controversial relevant aspects of the role of laser application and biochemical markers
during accelerating orthodontic tooth movement. Biochemical markers that mediate acceleration of
orthodontic tooth movement were identified in this review, and also was found that this acceleration
of dental movement is possible due to the bone functional properties and its ability to deposition
(mediated by osteoblasts) and bone resorption (mediated by osteoclasts). For each of these processes
exist biochemical markers that can be measured in serum or urine. Bone formation markers are
collagen and non-collagenous proteins while pyridinoline and deoxypyridinoline are resorption
markers. There are numerous mechanisms to accelerate tooth movement described in the literature;
surgical as corticotomy, insights intramedullary piezocision and surgery first, pharmacological as
prostaglandins and D vitamin, and physical as pulsatile stimuli and laser therapy. The purpose of
all of them is to accelerate the process and to have shorter orthodontic treatment. The laser
therapy has been reported as a safe and effective alternative to accelerate tooth movement and their
effects on cell populations involved in bone metabolism and pain have been evaluated in animal
studies and in humans, showing good results to reduce the total orthodontic treatment time and
having less pain sensation after placement of the arches used in the different stages of
treatment.We concluded that nowadays there is no randomized controlled clinical trials published to
evaluate the application of these biochemical markers in the process of acceleration of bone
metabolism during orthodontic treatment with the application of low intensity laser (GaAlAs)
considered as an effective tool to increase the speed of tooth movement and to reduce pain after
activation of orthodontic arches. Key words: Tooth movement, Biochemical markers, Low intensity

Key words: Tooth movement, Biochemical markers, Low intensity laser.

Pilar León, Universidad del Valle. Cali, Colombia.

Residente de postgrado en ortodoncia.

Angela Domínguez, Universidad del Valle. Cali, Colombia.

Odontóloga, especialista en ortodoncia, profesora Escuela de Odontología.

León, P., & Domínguez, A. (2013). Laser therapy and biochemical markers in the acceleration of orthodontic dental movement: a review of the literature. Revista Estomatología, 21(2), 26–31.
1. Ghizlane G, Kocadereli I, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci 2013; 28(1):41-7.

2. Scougall-Vilchis RJ, Takeuchi T, Yamamoto S, Yamamoto K. Efectos de la irradiación con ultrasonido de baja intensidad en el movimiento ortodóncico de intrusión. Rev Esp Ortod. 2009;39:85-9

3. Gokce S, Bengi AO, Akin E, Karacay S, Sagdic D, Kurkcu M, Gokce HS.. Effects of Hyperbaric Oxygen during Experimental Tooth Movement. Angle Orthodontist. 2008; 78(2): 304-308

4. Soma S, Matsumoto S, Higuchi Y, Takano- Yamamoto T, Yamashita K, Kurisu K, Iwamoto M. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000; 79(9):1717-24.

5. Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Effects of local administration of Osteocalcin on experimental tooth movement. Angle Orthod 1998; 68(3):259-66.

6. Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Administration of osteocalcin accelerates
orthodontic tooth movement induced by a closed coil spring in rats. Eur J Orthod 2001; 23 (5):535-45.

7. Shirazi M, Dehpour AR, Jafari F.The effect of thyroid hormone on orthodontic tooth movement in rats.J Clin Pediatr Dent 1999; 23 (3):259-64.

8. Verna C, Dalstra M, Melsen B. The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model.Eur J Orthod 2000; 22 (4):343-52.

9. Iglesias Linares A, Moreno Fernandez AM, Yañes Vico R, Mendoza Mendoza A, Gonzalez Moles M, Solano Reina E. The use of gene therapy vs corticotomy surgery in accelerating tooth movement. Orthod Craniofac Res 2011; 14 ( 3):138-48

10. Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Therapy 2006; 13 (8):678-85

11. Blanco JF, Diaz R, Gross H, Rodríguez N, Hernandez LR. Efecto de la administración sistémica del 1,25 Dihidrxicolecalciferol sobre la velocidad del movimiento ortodóncico en humanos. Estudio Clínico. Revista
Odontos 2001; 8:13-21.

12. Yamasaki K, Shibata Y et al. Clinicalapplication of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod 1984; 85(6):508-18.

13. Spielmann T, Wieslander L, Hefti AF. Acceleration of orthodontically induced tooth movement through the local application of prostaglandin (PGE1). Schweiz Monatsschr Zahnmed 1989; 99 (2):162-5.

14. Patil AK, Keluskar KM, Gaitonde SD. The Clinical application of prostaglandin E1 on orthodontic tooth movement. J ind orthod Soc 2005; 38:91-8.15. Kau CH, Nguyen JT, English JD. A novel device in orthodontics. Aesthetic dentistry today 2009; 3(6): 42-3.

16. Kau CH, Nguyen JT, English JD. The clinical evaluation of a novel cyclical force generating device in orthodontics. Orthodontic Practice US 2010; 1(1): 10-15

17. E. Shapiro; F.W. Roeber; L.S. Klempner. Orthodontic movement using pulsating force-induced piezoelectricity. Am J Orthod. 1979; 76 (1) :59-66.

18. Kim DH, Park YG, Kang SG. The effects of electrical current from a microelectrical device on tooth movement. Korean J Orthod 2008; 38 (5):337-46.

19. Wilcko, M.T., Wilko, W.M., Bissada, N.F. An evidence-based analysis of periodontally accelerated orthodontic and osteogenic techniques: a synthesis of scientific perspective. Seminars Orthod
2008; 14(4):305-16.

20. Dibart S, Surmenian J, Sebaoun JD, Montesani L. Rapid treatment of Class II malocclusion with piezocision: two case reports .Int J Periodontics Restorative Dent 2010; 30(5):487-93.

21. Pankaj J. Akhare, Akshay M. Daga, Shilpa Pharande. Rapid Canine Retraction and Orthodontic Treatment with Dentoalveolar Distraction Osteogenesis. Journal of Clinical and Diagnostic Research. 2011; 5(7): 1473-1477.

22. Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, Khabensky I, Gart LP, Cytokine Expression and Accelerated Tooth Movement J Dent Res 2010; 89(10):1135-1141.

23. Nagasaka H, Sugawara J, Kawamura H, Nanda R. “Surgery first” skeletal Class III correction using the Skeletal Anchorage System. J Clin Orthod. 2009; 43(2):97- 105.

24. Villegas C, Uribe F, Sugawara J, Nanda R. Expedited correction of significant dentofacial asymmetry using a “surgery first” approach. J Clin Orthod. 2010 ; 44(2):97-103

25. Villegas C, Janakiraman N, Uribe F, Nanda R. Rotation of the maxillomandibular complex to enhance esthetics using a “surgery first” approach. J Clin Orthod 2012 ;46(2):85-91.

26. Dominguez A., Velasquez S. Acceleration effect of orthodontic movement by application of low-intensity laser. J Oral .Laser Applications. 2010; 10: 99-105.

27. Domínguez A, Velásquez SA. Effect of low-level laser therapy on pain following activation of orthodontic final archwires: a randomized controlled clinical trial. Photomed Laser Surg. 2013 ;31(1):36-40

28. Lim H, Lew K, Tay D. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic post adjustment pain. American Journal of Orthodontics and Dentofacial Orthopedics1995; 108(6):614-22.

29. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 2008; 23(1):27–33

30. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR.The nuts and bolts of low-level laser (light) therapy.Ann Biomed Eng 2012; 40(2):516-33.

31. Sroka R, Schaffer M, Fuchs C, Pongratz T, Schrader-Reichard U, Busch M, Schaffer PM, Dühmke E, Baumgartner R. Effects on the mitosis of normal and tumor cells induced by light treatment of different
wavelengths. Lasers Surg Med 1999; 25(3):263-71.

32. Zhang J, Xing D, Gao X. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol. 2008; 217(2):518-28.

33. Miyata H, Genma T, Ohshima M, Yamaguchi Y, Hayashi M, Takeichi O, Ogiso B, Otsuka K. Mitogen activated protein kinase/extracellular signalregulated protein kinase activation of cultured human dental pulp cells by lowpower gallium-aluminium-arsenic laser irradiation. Int Endod J 2006; 39(3):238- 44.

34. Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X. Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J. Cell. Physiol 2006; 206(2):441-8.

35. Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M. Effect of low-intensity (3.75-25 J/cm2)
nearinfrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 2004; 22(2):111-7.

36. Kujawa J, Zavodnik L, Zavodnik I, Bryszewska M. Low intensity nearinfrared laser radiation-induced changes of acetylcholinesterase activity of human erythrocytes. J Clin Laser MedSurg. 2003; 21(6):351-5.

37. Kujawa J, Zavodnik IB, Lapshina A, Labieniec M, Bryszewska M. Cell survival, DNA, and protein damage in B14 cells under low-intensity near-infrared (810 nm) laser irradiation. Photomed Laser Surg 2004; 22(6):504-8.

38. Lirani-Galvão, A. P., V. Jorgetti, and O. L. Silva. Comparative study of lowlevel laser therapy and low-intensity pulsed ultrasound effect on bone in rats. Photomed Laser Surg 2006. 24(6):735-40.

39. Coluzzi, D. J. An overview of laser wavelengths used in Dentistry. Dent Clin North Am. 2000; 44(4):753-65.

40. Demir H, Yaray S, Kirnap M, Yaray K. Comparison of the effects of laser and ultrasound treatments on experimental wound healing in rats. J Rehabil Res Dev 2004. 41(5):721-8.

41. Kawasaki K, Shimizu N. Effect of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Laser SurgMed 2000. 26(3):282-91.

42. Ueda Y, Shimizu N. Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser MedSurg 2003; 21(5):271-7.

43. de Paula Eduardo C, de Freitas PM, Esteves-Oliveira M, Aranha AC, Ramalho KM, Simões A, Bello-Silva MS, Tunér J. Laser phototherapy in the treatment of periodontal disease. A review. Lasers Med Sci .2010; 25(6):781-92.

44. Almeida Lopes L, Rigau J, Zángaro RA, Guidugli-Neto J, Jaeger MM. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance
and same fluence. Lasers Surg Med 2001;29(2):179-84

45. Pereira AN, Eduardo Cde P, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 2002; 31(4):263-7.

46. Kreisler M, Christoffers AB, Willershausen B, d’Hoedt B. Effect of low-level GaAlAs laser irradiation on the proliferation of human periodontal ligament fibroblasts: an in vitro study. J Clin Peridontol 2003;

47. Choi EJ, Yim JY, Koo KT, Seol YJ, Lee YM, Ku Y, Rhyu IC, Chung CP, Kim TI.Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts.J Periodontal Implant Sci 2010; 40(3):105-10.

48. Saygun I, Karacay S, Serdar M, Ural AU .Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1(IGFBP3) from
gingival fibroblasts. Lasers Med Sci 2008; 23(2):211-5.

49. Dominguez A, Clarkson A, Lopez R. An in vitro study of the reaction of periodontal and gingival fibroblasts to low- level laser irradiation: A pilot study. J Oral Laser Applications 2008; 8:235-244.

50. Dominguez A, Castro P, Morales M. An In Vitro Study of the Reaction of Human Osteoblasts to Low-level Laser Irradiation. Journal of Oral Laser Applications 2009; 9(1):21-8

51. Dominguez A, Morales M, Zúñiga P. Cellular Effects related to the clinical uses of laser in orthodontics. Journal of Oral Laser Applications 2009; 9:199-203.

52. Coombe A.R, Darendeliler N. The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 2001; 4(1):3-14.

53. Fujihara NA, Hiraki KR, Marques MM. Irradiation at 780nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 2006; 38(4):332-336

54. Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 1998; 22(4):347-54.

55. Masoud S, Abbasnia E, Fathi M, Sahraei S. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 2012;27(2):423-30.

56. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 1997; 111 (5):525-32.

57. Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 2000; 26(3):282-91.

58. Habib FA, Gama SK, Ramalho LM, Cangussú MC, Santos Neto FP, Lacerda JA, Araújo TM, Pinheiro AL. Laserinduced alveolar bone changes during orthodontic movement: a histological study on rodents. Photomed Laser Surg 2010; 28(6):823-30.

59. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 2008; 11(3):143-55.

60. Aihara N, Yamaguchi M, Kasai K. Low– energy irradiation stimulates formation of osteoclast-like cells via RANK expression in Vitro. Lasers Med Sci 2006; 21(1): 24- 33.

61. Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha (v) beta (3) integrin in rats. The European Journal of Orthodontics. Eur J Orthod 2010;32(2):131-9.

62. Cruz D, Kohara E, Ribeiro M, Wetter N. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers in surgery and medicine 2004; 35(2):117-20.

63. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthodontics and Craniofacial Research 2006; 9(1):38-43.

64. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 2008; 23(1):27-33

65. Dominguez A., Velasquez S. (2010) Acceleration effect of orthodontic movement by application of low intensity laser. J Oral Laser Applications 2010; (10): 99-105.

66. Franco L. Ortiz M. Biochemical markers of bone metabolism. Rev. Estomat 2010; 18 (1): 30-4

67. Molina FC. Marcadores Bioquímicos de Remodelado Óseo. Rev Metab Oseo Mi 2003; 1(3):91-98.

68. Cruz M. Evaluación de la densidad ósea mandibular por medio de la radiografía digital. La densitometría bioquímica correlacionada en pacientes de ortodoncia. Revista Latinoamericana de Ortodoncia. 1997;69-74.

69. Guzmán J, Flores R, Rivera R, Suárez E. Osteoporosis. Problema clínico de la actualidad. Anales Medicos 2008; 53(2):87-99.