Main Article Content

Background: Traditional dental scanners require a heavy investment, representing a high barrier of entry into digital dentistry. Photogrammetric-based scanners may represent an affordable cost-effective alternative to traditional dental scanners used for the digitalization of plaster models. Photogrammetry is the science of extracting 3D information from photographs. The process involves taking overlapping photographs of an object or space and converting them into 2D or 3D digital models. Objective: This review aimed to identify and appraise the reported accuracy of photogrammetric-generated digital dental models.

Materials and methods: A search strategy was applied in 3 databases (Medline, Web of Science and Scopus), from Feb 1 2021 to Dec 1 2021, the search was limited to articles in English published in the last 5 years about studies evaluating the dimensional accuracy of 3-dimensional digital models acquired by the scanning of plaster models with photogrammetric technologies.

Results: Two independent reviewers screened 75 records on basis of titles and abstracts for assessment against the inclusion criteria for the review, 4 articles were deemed eligible, the risk of bias for the selected articles was measured, data extraction was performed by only one author.

Conclusion: With today’s technology, based on the four studies evaluated, we conclude that photogrammetric-generated digital models while lacking accuracy for incorporation into the treatment flow, in the future it could be used for diagnostic, planning, and achieving.

Juan Eduardo Gómez Vázquez, a:1:{s:5:"en_US";s:43:"Benemérita Universidad Autónoma de Puebla";}

Benemérita Universidad Autónoma de Puebla, Faculty of Stomatology, Department of Orthodontics, Puebla, México.


Benemérita Universidad Autónoma de Puebla, Faculty of Stomatology, Department of Orthodontics, Puebla, México.


Benemérita Universidad Autónoma de Puebla, Faculty of Stomatology, Department of Orthodontics, Puebla, México.


Benemérita Universidad Autónoma de Puebla, Faculty of Stomatology, Department of Orthodontics, Puebla, México.


Benemérita Universidad Autónoma de Puebla, Faculty of Stomatology, Department of Orthodontics, Puebla, México.

Gómez Vázquez, J. E., Samano Valencia, C., Carrasco Gutiérrez , R., López Pérez Franco, L. M., & Dib Kanan, A. (2022). Accuracy of photogrammetric technologies for the scanning of dental models: A systematic review. Revista Estomatología, 30(2).

Chalmers E V, Martin CB, Mcintyre GT, Dundee CL, Hospital D. An audit of plaster study models storage in hospital based orthodontic departments. Clin Eff Bull. 2015;34:29–30.

Charangowda B. Dental records: An overview. J Forensic Dent Sci [Internet]. 2010;2:5. Available from: doi:10.4103/0974-2948.71050

McGuinness NJ, Stephens CD. Storage of Orthodontic Study Models in Hospital Units in the U.K. Br J Orthod [Internet]. 1992;19:227–32. Available from: doi:10.1179/bjo.19.3.227

Zulqar-Nain J, Burgess G, Zander HA. Photogrammetry. J Periodontol [Internet]. 1967;38:677–81. Available from: doi:10.1902/jop.1967.38.6_part2.677

Aber JS, Marzolff I, Ries J, Aber SEW. Small-Format Aerial Photography and UAS Imagery: Principles, Techniques and Geoscience Applications [Internet]. Elsevier Science; 2019. Available from:

Kraus K, Harley IA, Kyle S. Photogrammetry: Geometry from Images and Laser Scans [Internet]. De Gruyter; 2011. Available from:

Luhmann T, Robson S, Kyle S, Boehm J. Close-Range Photogrammetry and 3D Imaging [Internet]. De Gruyter; 2013. Available from:

Sánchez-Monescillo A, Sánchez-Turrión A, Vellon-Domarco E, Salinas-Goodier C, Prados-Frutos J. Photogrammetry Impression Technique: A Case History Report. Int J Prosthodont. 2016;29:71–3.

Hernandez A, Lemaire E. A smartphone photogrammetry method for digitizing prosthetic socket interiors. Prosthet Orthot Int. 2017;41:210–4.

Salazar-Gamarra R, Seelaus R, Da Silva JVL, Da Silva AM, Dib LL. Monoscopic photogrammetry to obtain 3D models by a mobile device: A method for making facial prostheses. J Otolaryngol - Head Neck Surg [Internet]. Journal of Otolaryngology - Head & Neck Surgery; 2016;45:1–13. Available from: doi:10.1186/s40463-016-0145-3

Leal JS, Aroeira RMC, Gressler V, Greco M, Pertence AEM, Lamounier JA. Accuracy of photogrammetry for detecting adolescent idiopathic scoliosis progression. Spine J [Internet]. Elsevier Inc.; 2019;19:321–9. Available from:

James MR, Robson S, Smith MW. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surf Process Landforms. 2017;42:1769–88.

Kournoutas I, Vigo V, Chae R, Wang M, Gurrola J, Abla AA, et al. Acquisition of Volumetric Models of Skull Base Anatomy Using Endoscopic Endonasal Approaches: 3D Scanning of Deep Corridors Via Photogrammetry. World Neurosurg [Internet]. Elsevier Inc; 2019;129:372–7. Available from:

Nassar U, Hussein B, Oko A, Carey JP, Flores-Mir C. Dimensional accuracy of 2 irreversible hydrocolloid alternative impression materials with immediate and delayed pouring. J Can Dent Assoc (Tor). 2012;78.

Nagrath R, Lahori M, Agrawal M. A Comparative Evaluation of Dimensional Accuracy and Surface Detail Reproduction of Four Hydrophilic Vinyl Polysiloxane Impression Materials Tested Under Dry, Moist, and Wet Conditions-An In Vitro Study. J Indian Prosthodont Soc [Internet]. Springer India; 2014;14:59–66. Available from: doi:10.1007/s13191-014-0365-z

International Organization for Standardization. ISO 4823:2015(en), Dentistry — Elastomeric impression materials [Internet]. Int. Organ. Stand. 2015 [cited 2020 Aug 7]. Available from:

Castellini P, Scalise L, Tomasini EP. Teeth mobility measurement: A laser vibrometry approach. J Clin Laser Med Surg [Internet]. 1998;16:269–72. Available from: doi: 10.1089/clm.1998.16.269

Vögtlin C, Schulz G, Jäger K, Müller B. Comparing the accuracy of master models based on digital intra-oral scanners with conventional plaster casts. Phys Med [Internet]. 2016;1:20–6. Available from: doi:10.1016/j.phmed.2016.04.002

International Organization for Standardization. ISO 5725-1:1994(en), Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions [Internet]. Int. Organ. Stand. 1994 [cited 2020 Nov 9]. Available from:

Düppe K, Becker M, Schönmeyr B. Evaluation of Facial Anthropometry Using Three-Dimensional Photogrammetry and Direct Measuring Techniques. J Craniofac Surg [Internet]. 2018;29:1245–51. Available from: 10.1097/SCS.0000000000004580

Dindaroǧlu F, Kutlu P, Duran GS, Görgülü S, Aslan E. Accuracy and reliability of 3D stereophotogrammetry: A comparison to direct anthropometry and 2D photogrammetry. Angle Orthod [Internet]. 2016;86:487–94. Available from: doi:10.2319/041415-244.1

Camison L, Bykowski M, Lee WW, Carlson JC, Roosenboom J, Goldstein JA, et al. Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. Int J Oral Maxillofac Surg [Internet]. International Association of Oral and Maxillofacial Surgery; 2018;47:403–10. Available from: doi:10.1016/j.ijom.2017.08.008

De Menezes M, Rosati R, Ferrario VF, Sforza C. Accuracy and reproducibility of a 3-dimensional stereophotogrammetric imaging system. J Oral Maxillofac Surg [Internet]. Elsevier Inc.; 2010;68:2129–35. Available from: doi:10.1016/j.joms.2009.09.036

Koban KC, Leitsch S, Holzbach T, Volkmer E, Metz PM, Giunta RE. 3D Bilderfassung und Analyse in der Plastischen Chirurgie mit Smartphone und Tablet: eine Alternative zu professionellen Systemen? Handchirurgie Mikrochirurgie Plast Chir [Internet]. 2014;46:97–104. Available from: doi:10.1055/s-0034-1371822

Wellens HLL, Hoskens H, Claes P, Kuijpers-Jagtman AM, Ortega-Castrillón A. Three-dimensional facial capture using a custom-built photogrammetry setup: Design, performance, and cost. Am J Orthod Dentofac Orthop [Internet]. 2020;158:286–99. Available from:

PROSPERO [Internet]. [cited 2021 Dec 1]. Available from:

Munn Z, Aromataris E, Tufanaru C, Stern C, Porritt K, Farrow J, et al. The development of software to support multiple systematic review types: The Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI SUMARI). Int J Evid Based Healthc [Internet]. 2019;17:36–43. Available from: doi:10.1097/XEB.0000000000000152

Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med [Internet]. 2009;6. Available from: doi:10.1371/journal.pmed.1000097

Wallace BC, Small K, Brodley CE, Lau J, Trikalinos TA. Deploying an interactive machine learning system in an evidence-based practice center. Proc 2nd ACM SIGHIT Symp Int Heal informatics - IHI ’12 [Internet]. New York, New York, USA: ACM Press; 2012. p. 819. Available from: doi:10.1145/2110363.2110464

Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol [Internet]. 2003;3:25. Available from: doi:10.1186/1471-2288-3-25

McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods [Internet]. n/a. Available from:

Santoši Ţ, Budak I, Šokac M, Puškar T, Vukelić Đ, Trifković B. 3D digitization of featureless dental models using close range photogrammetry aided by noise based patterns. Facta Univ Ser Mech Eng [Internet]. 2018;16:297–305. Available from: doi:10.22190/FUME170620029S

Silvester CM, Hillson S. A critical assessment of the potential for Structure-from-Motion photogrammetry to produce high fidelity 3D dental models. Am J Phys Anthropol [Internet]. 2020;173:381–92. Available from: doi:10.1002/ajpa.24109

Stuani VT, Ferreira R, Manfredi GGP, Cardoso M V., Sant’Ana ACP. Photogrammetry as an alternative for acquiring digital dental models: A proof of concept. Med Hypotheses [Internet]. Elsevier; 2019;128:43–9. Available from: doi:10.1016/j.mehy.2019.05.015

Fu X, Peng C, Li Z, Liu S, Tan M, Song J. The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts. PLoS One [Internet]. 2017;12:1–13. Available from: doi:10.1371/journal.pone.0178858

Alyaman M, Abd-Raheem A, Aldeiri F. Design of an automated extraoral photogrammetry 3d scanner. Int Arab J Inf Technol. 2019;16:533–9.

Arapović-Savić M, Savić M, Umićević-Davidović M, Arbutina A, Nedeljković N, Glišić B. A novel method of photogrammetry measurements of study models in orthodontics. Srp Arh Celok Lek [Internet]. 2019;147:10–6. Available from: doi:10.2298/SARH180419074A

Akyalcin S, Dyer DJ, English JD, Sar C. Comparison of 3-dimensional dental models from different sources: Diagnostic accuracy and surface registration analysis. Am J Orthod Dentofac Orthop [Internet]. American Association of Orthodontists; 2013;144:831–7. Available from: doi:10.1016/j.ajodo.2013.08.014

Renne W, Ludlow M, Fryml J, Schurch Z, Mennito A, Kessler R, et al. Evaluation of the accuracy of 7 digital scanners: An in vitro analysis based on 3-dimensional comparisons. J Prosthet Dent [Internet]. Editorial Council for the Journal of Prosthetic Dentistry; 2017;118:36–42. Available from: doi:10.1016/j.prosdent.2016.09.024

Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent [Internet]. Editorial Council for the Journal of Prosthetic Dentistry; 2016;115:313–20. Available from: doi:10.1016/j.prosdent.2015.09.011

Asquith J, Gillgrass T, Mossey P. Three-dimensional imaging of orthodontic models: a pilot study. Eur J Orthod [Internet]. 2007;29:517–22. Available from:

Okunami TR, Kusnoto B, BeGole E, Evans CA, Sadowsky C, Fadavi S. Assessing the American Board of Orthodontics objective grading system: Digital vs plaster dental casts. Am J Orthod Dentofac Orthop [Internet]. 2007;131:51–6. Available from:

Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ. Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop [Internet]. Mosby Inc.; 2009;136:16.e1-4; discussion 16. Available from:

AliceVision. AliceVision | Photogrammetric Computer Vision Framework [Internet]. 2020 [cited 2020 Aug 7]. Available from:

Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. MeshLab: An open-source mesh processing tool. 6th Eurographics Ital Chapter Conf 2008 - Proc [Internet]. 2008;129–36. Available from: doi:10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136

Brach M, Chan J, Szymanski P. Accuracy assessment of different photogrammetric software for processing data from low-cost UAV platforms in forest conditions. iForest - Biogeosciences For [Internet]. 2019;12:435–41. Available from: doi:10.3832/ifor2986-012

Aati S, Rupnik E, Nejim S. Comparative study of photogrammetry software in industrial field. Rev Française Photogrammétrie Télédétection [Internet]. 2020;1:37–48. Available from: doi:10.52638/rfpt.2019.439

Dixit I, Kennedy S, Piemontesi J, Kennedy B, Krebs C. Which tool is best: 3D scanning or photogrammetry – It depends on the task. Adv Exp Med Biol [Internet]. 2019;1120:107–19. Available from: doi:10.1007/978-3-030-06070-1_9

Prudente MS, Davi LR, Nabbout KO, Prado CJ, Pereira LM, Zancopé K, et al. Influence of scanner, powder application, and adjustments on CAD-CAM crown misfit. J Prosthet Dent [Internet]. 2018;119:377–83. Available from: doi:10.1016/j.prosdent.2017.03.024

Gruen A. Everything moves: The rapid changes in photogrammetry and remote sensing. Geo-Spatial Inf Sci [Internet]. Taylor & Francis; 2021;24:33–49. Available from: