Main Article Content

Authors

In recent years, there has been an increasing interest in finding a noninvasive method to induce the acceleration of dental movement, methods such as low intensity vibrations, pulsed electromagnetic fields, and low-level laser therapy (LLLT). There have been multiple studies on the efficacy of LLLT in animal models, in vitro and in patients without conclusive results. Objective: Evaluate the state of the art on the use of LLLT to increase the rate of the orthodontic tooth movement to create a concise reference guide of the different laser and protocols available. Materials and Methods: We searched online databases for articles with the keywords LLLT, LLLI, OTM, photobiomodulation. Results: We found conflicting information as to the efficacy of LLLT to accelerate OTM. There is no consensus in the way the irradiation should be performed. Conclusions: The lack of a standardized irradiation protocol makes it hard to compare conflicting results, even in cases where the laser have the same technical specifications.

Casillas Santana, M. A. A., García Vega, M. F., Gomez Vázquez, J. E., Montero Jiménez, O. G., Orozco Jiménez, D., & Rodríguez Zarate, J. (2021). Clinical and experimental knowledge of photobiomodulation in accelerated orthodontics: a review. Revista Estomatología, 28(1), 25–32. https://doi.org/10.25100/re.v28i1.10548 (Original work published December 1, 2020)

Kim SJ, Chou MY, Park YG. Effect of low-level laser on the rate of tooth movement. Semin Orthod [Internet]. 2015;21(3):210–8. Available from: http://dx.doi.org/10.1053/j.sodo.2015.06.008

Haliloglu Ozkan T, Arıcı S, Özkan E. Acceleration of Orthodontic Tooth Movement: An Overview. Anadolu Klin Tıp Bilim Derg. 2018;23(2):121–8.

Buschang PH, Campbell PM, Ruso S. Accelerating Tooth Movement With Corticotomies: Is It Possible and Desirable? Semin Orthod [Internet]. 2012;18(4):286–94. Available from: http://dx.doi.org/10.1053/j.sodo.2012.06.007

Patterson BM, Dalci O, Darendeliler MA, Papadopoulou AK. Corticotomies and Orthodontic Tooth Movement: A Systematic Review. J Oral Maxillofac Surg [Internet]. 2016;74(3):453–73. Available from: http://dx.doi.org/10.1016/j.joms.2015.10.011

Jing D, Xiao J, Li X, Li Y, Zhao Z. The effectiveness of vibrational stimulus to accelerate orthodontic tooth movement: A systematic review. BMC Oral Health. 2017;17(1):1–9.

Ark TNI, Sinclair PMs. et of pulsed eEectromagneticfieZds toots movement on orthod. Am J Orthod Dentofac Orthop. 1987;91(2):91–104.

Yamasaki K, Shibata Y, Imai S, Tani Y, Shibasaki Y, Fukuhara T. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod. 1984;85(6):508–18.

Long H, Zhou Y, Xue J, Liao L, Ye N, Jian F, et al. The effectiveness of low-level laser therapy in accelerating orthodontic tooth movement: a meta-analysis. Lasers Med Sci. 2015;30(3):1161–70.

Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod. 2010;32(2):131–9.

Lirani-Galvão AP, Jorgetti V, Lopes Da Silva O. Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats. Photomed Laser Surg. 2006;24(6):735–40.

KAWASAKI K, SHIMIZU N. Effect of low-energy laser irradiation on bone formation during experimental tooth movement in rats. J Japan Soc Laser Surg Med. 1999;20(3):215–22.

Ueda Y, Shimizu N. Effects of Pulse Frequency of Low-Level Laser Therapy (LLLT) on Bone Nodule Formation in Rat Calvarial Cells. J Clin Laser Med Surg. 2003;21(5):271–7.

B Cotler H. The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain. MOJ Orthop Rheumatol [Internet]. 2015 Jun 9;2(5):139–48. Available from: https://medcraveonline.com/MOJOR/the-use-of-low-level-laser-therapy-lllt-for-musculoskeletal-pain.html

León P, Domínguez A. Laser therapy and biochemical markers in the acceleration of orthodontic dental movement: a review of the literature. Rev Estomatol. 2017;21(2):26–31.

Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B. Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci. 2008;23(2):211–5.

Domínguez A, Clarkson A, Lopez R. An In Vitro Study of the Reaction of Periodontal and Gingival Fibroblasts to Low-level Laser Irradiation : A Pilot Study. J Oral Laser Appl. 2008;8(January 2008):235–44.

Kreisler M, Christoffers AB, Willershausen B, D’Hoedt B. Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: An in vitro study. J Clin Periodontol. 2003;30(4):353–8.

Pereira AN, De Paula Eduardo C, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med. 2002;31(4):263–7.

Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MMM. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med. 2001;29(2):179–84.

Aras MH, Erkilic S, Demir T, Demirkol M, Kaplan DS, Yolcu U. Effects of low-level laser therapy on osteoblastic bone formation and relapse in an experimental rapid maxillary expansion model. Niger J Clin Pract. 2015;18(5):607–11.

Khadra M, Lyngstadaas SP, Haanæs HR, Mustafa K. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials. 2005;26(17):3503–9.

Domínguez A, Clarkson A, Lopez R. An In Vitro Study of the Reaction of Human Osteoblasts to low-level Laser Irradiation. J Oral Laser Appl. 2008;8(January 2008):235–44.

Na S, TruongVo T, Jiang F, Joll JE, Guo Y, Utreja A. Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte. J Biomed Opt. 2018;23(07):1.

Ge MK, He WL, Chen J, Wen C, Yin X, Hu ZA, et al. Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis. Lasers Med Sci. 2015;30(5):1609–18.

Deana NF, Zaror C, Sandoval P, Alves N. Effectiveness of Low-Level Laser Therapy in Reducing Orthodontic Pain: A Systematic Review and Meta-Analysis. Pain Res Manag. 2017;2017.

Maria Wilson T, Jain S. Effects of Low Level Laser Therapy on Orthodontic Tooth Movement: A Systematic Review. J Orthod Endod. 2018;04(04):1–7.

AlSayed Hasan MMA, Sultan K, Hamadah O. Low-level laser therapy effectiveness in accelerating orthodontic tooth movement: A randomized controlled clinical trial. Angle Orthod. 2017;87(4):499–504.

Da Silva Sousa MV, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg. 2011;29(3):191–6.

Genc G, Kocadereli I, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci. 2013;28(1):41–7.

Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: A preliminary study. Lasers Med Sci. 2008;23(1):27–33.

Yassaei S, Aghili H, Afshari JT, Bagherpour A, Eslami F. Effects of diode laser (980 nm) on orthodontic tooth movement and interleukin 6 levels in gingival crevicular fluid in female subjects. Lasers Med Sci [Internet]. 2016;31(9):1751–9. Available from: http://dx.doi.org/10.1007/s10103-016-2045-1

Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: A preliminary study. Lasers Surg Med. 2004;35(2):117–20.

Domínguez A, Gómez C, Palma JC. Effects of low-level laser therapy on orthodontics: rate of tooth movement, pain, and release of RANKL and OPG in GCF. Lasers Med Sci. 2015;30(2):915–23.

Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: A clinical investigation. Am J Orthod Dentofac Orthop [Internet]. 2012;141(3):289–97. Available from: http://dx.doi.org/10.1016/j.ajodo.2011.09.009

Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets. Am J Orthod Dentofac Orthop [Internet]. 2017;152(5):622–30. Available from: https://doi.org/10.1016/j.ajodo.2017.03.023

Varella AM, Revankar A V., Patil AK. Low-level laser therapy increases interleukin-1β in gingival crevicular fluid and enhances the rate of orthodontic tooth movement. Am J Orthod Dentofac Orthop [Internet]. 2018;154(4):535-544.e5. Available from: https://doi.org/10.1016/j.ajodo.2018.01.012

Isola G, Matarese M, Briguglio F, Grassia V, Picciolo G, Fiorillo L, et al. Effectiveness of low-level laser therapy during tooth movement: A randomized clinical trial. Materials (Basel). 2019;12(13):1–12.

Dalaie K, Hamedi R, Kharazifard MJ, Mahdian M, Bayat M. Effect of Low-Level Laser Therapy on Orthodontic Tooth Movement: A Clinical Investigation. J Dent (Tehran) [Internet]. 2015;12(4):249–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26622279%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4662762

Heravi F, Moradi A, Ahrari F. The effect of low level laser therapy on the rate of tooth movement and pain perception during canine retraction. Oral Health Dent Manag. 2014 Jun;13(2):183–8.

Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofacial Res. 2006;9(1):38–43.

Kansal A, Kittur N, Kumbhojkar V, Keluskar KM, Dahiya P. Effects of low-intensity laser therapy on the rate of orthodontic tooth movement: A clinical trial. Dent Res J (Isfahan) [Internet]. 2014 Jul;11(4):481–8. Available from: https://pubmed.ncbi.nlm.nih.gov/25225562

Received 2020-08-24
Accepted 2020-09-20
Published 2021-03-25